
Practical Exhaustive Generation of Small
Multiway Cuts in Sparse Graphs⋆

Petr Hliněný and Ondřej Slámečka

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

{hlineny, xslameck}@fi.muni.cz

Abstract. We propose a new algorithm for practically feasible exhaus-
tive generation of small multiway cuts in sparse graphs. The purpose of
the algorithm is to support a complete analysis of critical combinations of
road disruptions in real-world road networks. Our algorithm elaborates
on a simple underlying idea from matroid theory – that a circuit-cocircuit
intersection cannot have cardinality one (here cocircuits are the gener-
ated cuts). We evaluate the practical performance of the algorithm on
real-world road networks, and propose algorithmic improvements based
on the technique of generation by a canonical construction path.

1 Introduction

In the area of real-world road network planning and management, one of the
vital tasks is to identify potential vulnerabilities of the network in advance. One
of the most critical such vulnerabilities is the possibility of a complete break-
up of the network as a result of simultaneous disruptions of several roads. In
graph theory terms, this corresponds to finding minimal cuts in the network
graph (here we consider edge cuts by default). However, not every graph cut
corresponds to a major disintegration of the whole network; e.g., a cut may just
isolate one or several unimportant road intersections (or small villages) and the
rest of the network remains fully functional. In fact, one can easily imagine that
most small cuts in a real-world network are of the latter (unimportant) kind.

There exist various rather complicated measures of severity of a network
break-up, taking into an account the numbers of inhabitants and the economic
importance of the nodes which get disconnected from each other, as well as the
number of components (cells) into which the network is broken up. See [1] for
further references. Notice that, in particular, we have to consider also cuts which
separate the network into more than two components (called multiway cuts). In
a nutshell, research shows that efficient identification of all severe network break-
ups does not seem possible without first exhaustively generating all the minimal
multiway cuts with small number of edges in the given network.

In our paper we focus right on this task. If we fix integers 𝑘, 𝑚, then the task of
generating all the minimal 𝑘-way cuts consisting of at most 𝑚 edges is, in theory,
solvable in polynomial time by brute force testing all combinations of at most 𝑚

⋆ Research supported by the Czech Science Foundation, project 14-03501S.

2 Petr Hliněný and Ondřej Slámečka

edges of the network. However, experiments carried out over networks of around
1000 edges in [1] clearly show that such a brute force approach is practically
feasible, even on parallel machines, only for 𝑚 ≤ 4. To support the analysis
of road network break-ups caused by more than 4 simultaneous disruptions, we
proposed a new approach to an exhaustive small cut generation whose simplified
heuristic version has already been implemented and successfully used in [1].

The underlying idea of our proposed approach is very natural and simple:
suppose we construct a (to-be) cut 𝑋 iteratively, and there exists a cycle 𝐶 such
that 𝐶 intersects 𝑋 in exactly one edge—then another edge of 𝐶 must belong
to the resulting minimal cut extending 𝑋. Consequently, the next iteration can
choose only from the edges of 𝐶 instead of the whole network. Since in real-world
road networks one can usually find an abundance of short cycles everywhere
(where “short” typically means 4 or 5), this approach can dramatically reduce
the search space and the runtime of the algorithm.

Here we provide a theoretical background for this new Circuit-cocircuit algo-
rithm scheme in terms of matroid theory, which seamlessly integrates generation
of minimal 𝑘-way cuts for all values of 𝑘 into the one scheme. We further elab-
orate the algorithm towards the so-called canonical generation which provides
additional important speed-up. We also report on the results of practical com-
putational experiments carried out with different versions of our algorithm.

Related research. Computing a minimum two-terminal cut in a graph is a well-
known easy application of network flow theory. However, the seemingly similar
problem of counting the minimum cuts in a graph is #P-complete [2] (i.e., equiv-
alent to #SAT). Notice that there is a crucial difference between the terms
minimum and minimal cut—where “minimum” means of smallest possible car-
dinality and “minimal” cuts are those for which no proper subset of them is a
cut again (while their cardinality may be arbitrarily high). In our task, if we
set 𝑚 equal to the minimum cut size in the graph (instead of fixing it to a
small value beforehand), we hence get that our generation problem is #P-hard
in general. Fortunately, experiments with real-world road networks show that
their particular case is often computationally much simpler.

Concerning 𝑘-terminal cuts for 𝑘 > 2, already computing a minimum three-
terminal cut in a graph is an APX-hard problem [3]. Consequently, things do
not get any easier with generating multiway cuts. Besides obvious brute force
attempts, not much has been published in literature about exhaustive generation
of small cuts in graphs. One remarkable exception is the work of Reinelt and
Wenger [4], who elaborated on the classical so-called “cactus representation” of
Dinitz et al. [5] to provide a practically efficient algorithm for generation of all
minimum multiway cuts in a graph. However, the problem with [4] and previous
related papers is that they all compute “minimum” cuts, but in our case we have
to generate also all the larger minimal cuts (up to a cardinality bound 𝑚) in
addition to the minimum (in terms of cardinality) ones.

Paper organization. In Section 2 we give a brief introduction to the necessary
theoretical concepts. After that we state the abstract Circuit-cocircuit algorithm

Practical Exhaustive Generation of Small Multiway Cuts in Sparse Graphs 3

for matroids (Alg. 3.2) and illustrate a simple use of it for generating minimal 2-
cuts in a graph (Alg. 3.7). The full power of the Circuit-cocircuit meta-algorithm
shows up in Section 4 where we apply it to exhaustively generate all minimal
𝑘-way cuts in a graph (Alg. 4.5). Section 5 then outlines a further improvement of
the algorithm using the so-called canonical generation. Due to space restrictions
in the conference paper, some parts have to be skipped from the main paper
body, and those are included in the Appendix.

2 Preliminaries

We mostly follow standard terminology of graph theory. The vertex set of a
graph 𝐺 is referred to as 𝑉 (𝐺) and the edge set as 𝐸(𝐺). In the paper we pay
a particular attention to the following graph terms.

An edge-cut in a graph 𝐺 is a set of edges 𝑋 ⊆ 𝐸(𝐺) such that 𝐺 ∖𝑋 (the
subgraph of 𝐺 obtained by deleting the edges 𝑋) has more connected components
than 𝐺 has. A 𝑘-way edge-cut in a graph 𝐺 is a set of edges 𝑋 ⊆ 𝐸(𝐺) such
that 𝐺∖𝑋 has at least 𝑘 connected components. Note that in connected graphs,
an edge-cut coincides with a 2-way edge-cut, while in a disconnected graph this
assertion fails (the empty set is then a 2-way edge-cut).

Definition 2.1 (Bond). We call a bond any minimal edge-cut in a graph, and
a 𝑘-bond any minimal 𝑘-way edge-cut in a graph (minimality is considered with
respect to set inclusion).

A graph is a tree if it is connected but deleting any of its edges disconnects
it. In other words, a tree contains no cycles. A graph is a forest if each of its
connected components is a tree. If 𝐺 is a graph and 𝐹 ⊆ 𝐺 is a tree (forest)
such that 𝑉 (𝐹) = 𝑉 (𝐺), then 𝐹 is a spanning tree (forest) of 𝐺.

It turns out that the most suitable framework for an abstract description of
our proposed algorithm is that of matroid theory. We follow Oxley [6] in matroid
terminology, and we give a brief introduction (with examples) next.

Definition 2.2 (Matroid). A matroid is a pair 𝑀 = (𝐸,ℬ) where 𝐸 = 𝐸(𝑀)
is the finite ground set of 𝑀 (elements of 𝑀), and ℬ ⊆ 2𝐸 is a nonempty
collection of bases of 𝑀 , no two of which are in an inclusion. Moreover, matroid
bases must satisfy the “exchange axiom”; if 𝐵1, 𝐵2 ∈ ℬ and 𝑥 ∈ 𝐵1 ∖ 𝐵2, then
there is 𝑦 ∈ 𝐵2 ∖𝐵1 such that (𝐵1 ∖ {𝑥}) ∪ {𝑦} ∈ ℬ.

The following terminology is used in matroid theory. Subsets of bases are
called independent sets, and the remaining sets are dependent. Minimal sets not
contained in a basis (i.e., dependent sets) are called circuits, and maximal sets
not containing any basis are called hyperplanes.

Example 2.3. Let 𝐴 = {𝑎1, . . . , 𝑎𝑛} be a finite set of vectors. If ℬ is the set of
all maximal independent subsets of 𝐴, then 𝑀 = (𝐴,ℬ) is a matroid, called
the vector matroid of 𝐴. The independent sets of 𝑀 are precisely the linearly
independent subsets of 𝐴.

4 Petr Hliněný and Ondřej Slámečka

Example 2.4. If 𝐺 is a connected graph, then its cycle matroid on the ground
set 𝐸(𝐺) is as follows: bases are the (edge sets of the) spanning trees of 𝐺,
independent sets are the (edge sets of) forests in 𝐺, circuits are the usual cycles
in 𝐺, and hyperplanes are the set complements of bonds in 𝐺.

For a matroid 𝑀 = (𝐸,ℬ), the matroid on the same ground set 𝐸 and with
the (complementary) bases 𝐵* = {𝐸 ∖ 𝐵 : 𝐵 ∈ ℬ} is called the dual matroid of
𝑀 and denoted by 𝑀*. The circuits of 𝑀* are called cocircuits of 𝑀 .

Example 2.5. Let 𝐺 be a planar graph and 𝑀 the cycle matroid of 𝐺. Then 𝑀*

is the cycle matroid of the geometric dual of 𝐺.

Claim 2.6 (folklore, see [6]). Let 𝑀 be a matroid.

a) If 𝐵 is a basis of 𝑀 and 𝑒 ∈ 𝐸 ∖ 𝐵, then 𝐵 ∪ {𝑒} contains precisely one
circuit (through 𝑒).

b) If 𝐻 is a hyperplane of 𝑀 and 𝑒 ∈ 𝐸 ∖𝐻, then 𝐻 ∪ {𝑒} contains a basis 𝐵
of 𝑀 and 𝑒 ∈ 𝐵.

c) A set 𝑋 ⊆ 𝐸 is a cocircuit of 𝑀 iff 𝐸 ∖𝑋 is a hyperplane of 𝑀 .
d) Cocircuits of 𝑀 are precisely the minimal sets intersecting every basis of 𝑀 .

Claim 2.7 (cf. Example 2.4). Let 𝑀 be the cycle matroid of a graph 𝐺. Then
the cocircuits of 𝑀 are precisely the bonds of 𝐺. ⊓⊔

3 The Circuit-Cocircuit Meta-algorithm

In view of Claim 2.7, it is possible to formulate the problem of generating all
bonds of a graph as generating all the cocircuits of its cycle matroid. This ap-
proach might seem restrictive at the first sight as it does not directly capture
generation of 𝑘-bonds for 𝑘 > 2, but precisely the opposite is true: we will later
show that 𝑘-bonds are the cocircuits under a suitably adjusted definition of the
cycle matroid of a graph.

It is quite natural to see that a cycle and a bond in a graph cannot intersect in
precisely one edge. A generalization of this observation is one of the fundamental
claims in matroid theory (note, however, that a matroid circuit and a cocircuit
may intersect in 3 or 5, etc, elements. . .):

Proposition 3.1 (folklore, see [6]). If 𝐶 is a circuit and 𝑋 is a cocircuit in
a matroid M, then |𝐶 ∩𝑋| ≠ 1.

With Proposition 3.1 at hand, we may simply proceed as follows: start with
any element of 𝑀 in 𝑋, find a circuit 𝐶 such that |𝐶 ∩𝑋| = 1, and then for
each element 𝑐 ∈ 𝐶 ∖𝑋 try to add 𝑐 to 𝑋 and recurse. The recursion proceeds as
long as 𝐸 ∖𝑋 contains a hyperplane of 𝑀 , cf. Claim 2.6 c). The full pseudocode
is given in Algorithm 3.2.

Theorem 3.3. Algorithm 3.2 generates all the cocircuits of size ≤ 𝑚 in a ma-
troid 𝑀 (with repetition – the same cocircuit may be generated several times).

Practical Exhaustive Generation of Small Multiway Cuts in Sparse Graphs 5

Algorithm 3.2 Abstract Circuit-Cocircuit Meta-algorithm
Input: Matroid 𝑀 = (𝐸,ℬ) and an integer 𝑚 ∈ N (a cocircuit size bound)
Output: All cocircuits of 𝑀 with size ≤ 𝑚
1: 𝐵 ← an arbitrary basis in ℬ
2: for all 𝑏 ∈ 𝐵 do
3: 𝑋 ← {𝑏}
4: GenCocircuits(𝑋)
5: end for
6: procedure GenCocircuits(𝑋)
7: if 𝐸 ∖𝑋 contains no hyperplane of 𝑀 or |𝑋| > 𝑚 then
8: return ⊥ ◁ this branch fails
9: end if

10: Find any circuit 𝐶 ⊆ 𝐸 such that |𝐶 ∩𝑋| = 1
11: if such 𝐶 doesn’t exist then
12: output 𝑋 ◁ 𝑋 is a cocircuit
13: else
14: 𝐷 ← 𝐶 ∖𝑋
15: for all 𝑐 ∈ 𝐷 do
16: GenCocircuits(𝑋 ∪ {𝑐})
17: end for
18: end if
19: end procedure

The proof follows rather straightforwardly (though not shortly) from Claim 2.6,
but due to space restrictions it is skipped here.

Remark 3.4. Note that Algorithm 3.2 makes some nondeterministic steps – the
choices (of 𝐵, 𝐶) on lines 1, 10 and also the ordering (of 𝐷) on line 15. Theorem
3.3 asserts that for any particular implementation of these steps, the algorithm
remains correct. We exploit this fact mainly with the choice of 𝐶 on line 10,
where we aim to minimize |𝐶|. If we are (mostly) able to choose 𝐶 “very small”,
bounded by a constant such as 5 or 6, then we get a dramatic runtime speed-up
over the basic brute force approach trying all ≤ 𝑚-elements subsets of 𝐸. Indeed,
this is the typical case for the cycle matroids of real-world road networks.

Remark 3.5. There is one weakness of Algorithm 3.2 which is common to many
iterative/recursive combinatorial generation algorithms—the same object (here
a cocircuit or a bond) is generated many times in different orders of its elements.
While there is no easy general remedy for this common problem, we will provide
a practically working fast resolution in Section 5.

3.1 Generating 2-Bonds in a Graph

To better explain Algorithm 3.2 and its use, we now present a sample imple-
mentation for generating all the 2-bonds in a connected graph. The main task
of our implementation is to realize line 7 —to be able to efficiently test whether
𝐸 ∖𝑋 contains a hyperplane of 𝑀 . This is based on the following claim:

6 Petr Hliněný and Ondřej Slámečka

Lemma 3.6. Let 𝐺 be a connected graph, 𝑀 = (𝐸,ℬ) its cycle matroid and
𝑌 ⊆ 𝐸 = 𝐸(𝐺). The set 𝐸 ∖ 𝑌 contains a hyperplane of 𝑀 if, and only if, the
vertices incident to the edges of 𝑌 can be coloured red and blue, such that each
edge of 𝑌 gets two colours and there exist two disjoint trees 𝑇𝑟 and 𝑇𝑏 in 𝐺 ∖ 𝑌
such that the tree 𝑇𝑟 (𝑇𝑏) connects all the red (blue, resp.) vertices of 𝑌 .

Proof. (⇒) If 𝐸 ∖ 𝑌 contains a hyperplane of 𝑀 , then there exists a cocircuit
𝑋 ⊇ 𝑌 by Claim 2.6 c). Since 𝑋 is a 2-bond in 𝐺, 𝐺 ∖ 𝑋 has precisely two
connected components (as otherwise 𝑋 would not be minimal). Colouring the
ends of 𝑌 in one component red and in the other blue finishes the argument.

(⇐) Let 𝑅 = 𝑉 (𝑇𝑟) and 𝐵 = 𝑉 (𝑇𝑏) be the vertex sets of the assumed two
trees in 𝐺∖𝑌 . Let 𝑈 ⊆ 𝑉 (𝐺) be the set reachable from 𝑅 in 𝐺∖𝐵 and 𝑋 ⊆ 𝐸(𝐺)
be the edges having precisely one end in 𝑈 . Then 𝑌 ⊆ 𝑋 by the definition, and
𝑋 is a cut in 𝐺 separating 𝑅 from 𝐵. Moreover, 𝑋 is minimal, and so 𝑋 is a
2-bond and 𝐸 ∖𝑋 is a hyperplane of 𝑀 which is contained in 𝐸 ∖ 𝑌 . ⊓⊔

In regard of Lemma 3.6, we choose the following implementation of the hy-
perplane test on line 7. During the progress of the algorithm, each edge 𝑒 chosen
to be added to 𝑋 gets the colours red and blue at its ends, such that this choice
is consistent (wrt. edges already in 𝑋) and fulfills the next conditions (Alg. 3.7).
This implementation results in the following algorithm:

Algorithm 3.7 (Circuit-Cocircuit algorithm for 2-bonds in a graph).
We specify Algorithm 3.2 with the following points:
(1) Let 𝑀 of Algorithm 3.2 be the cycle matroid of an input graph 𝐺.
(2) With respect to implementation of line 7, the first edge added to 𝑋 on line

3 gets the colours red/blue arbitrarily. Let, subsequently, 𝑉 (𝑋) = 𝑉𝑟 ∪ 𝑉𝑏

where 𝑉𝑟 are the red ends of 𝑋 and 𝑉𝑏 the blue ends. We actively maintain
only a red tree 𝑇𝑟 interconnecting 𝑉𝑟 (as expected by Lemma 3.6), while a
blue tree is implicit – the two trees are not treated symmetrically: see further
Algorithm 4.5 for details of building and maintaining 𝑇𝑟.

(3) Instead of a cycle 𝐶 on line 10, we explicitly look for a (shortest) path
𝑃 ⊆ 𝐺 ∖𝑋 such that one end of 𝑃 is 𝑢𝑟 ∈ 𝑉𝑟 and the other end is 𝑢𝑏 ∈ 𝑉𝑏.
Note that, for any 𝑓 ∈ 𝑋 with one end 𝑢𝑏, there is a cycle 𝐶 formed by 𝑃 , 𝑓
and the unique path in 𝑇𝑟 from 𝑢𝑟 to 𝑓 such that 𝐶 ∩𝑋 = {𝑓}, as expected
by Algorithm 3.2, but we do not explicitly invoke 𝐶 in our implementation.

(4) On line 14, we set 𝐷 ← 𝐸(𝑃) (which is a subset of the implicit circuit 𝐶).

Proposition 3.8. Algorithm 3.7 generates all the 2-bonds of size ≤ 𝑚 in a
connected graph 𝐺 (with possible repetition).

The proof nearly immediately follows from Theorem 3.3 and Claim 2.7, but
there is one catch: the set 𝐷 computed on line 14 may be a strict subset of 𝐶 ∖𝑋
expected in Algorithm 3.2. We can show that for every 2-bond 𝑋0 of 𝐺, at least
one of the computation paths leading to 𝑋0 is not affected by this deficiency.
Again, due to space restrictions a full proof is skipped here.

Practical Exhaustive Generation of Small Multiway Cuts in Sparse Graphs 7

4 𝑘-Way Cycle Matroid and Generating 𝑘-Bonds

As mentioned before, Algorithm 3.2 can be used for generating 𝑘-bonds of a
graph for any 𝑘 ≥ 2. We just have to extend the definition of a cycle matroid so
that cocircuits within the new definition are precisely the 𝑘-bonds.

Definition 4.1 (𝑘-way cycle matroid). Let 𝐺 be a graph of less than 𝑘 ≥ 2
components. The 𝑘-way cycle matroid of 𝐺 is a matroid on the ground set 𝐸(𝐺),
such that its bases are the edge sets of the spanning forests of 𝐺 consisting of
𝑘−1 trees. The bases, circuits, cocircuits, hyperplanes of the 𝑘-way cycle matroid
are also called the 𝑘-way bases, circuits, cocircuits, hyperplanes of 𝐺.

From this definition one can easily conclude some basic properties.

Claim 4.2. Let 𝐺 be a graph consisting of less than 𝑘 ≥ 2 components.
The 𝑘-way cocircuits of 𝐺 are precisely the 𝑘-bonds of 𝐺.
The 𝑘-way circuits of 𝐺 are of two types, type-C and type-F:

– type-C circuits are the graph cycles in 𝐺.
– type-F circuits, also called spanning circuits, for 𝑘 ≥ 3, are the spanning

forests of 𝐺 that are formed by 𝑘 − 2 trees.

Now, by Theorem 3.3, every implementation of Algorithm 3.2 for the 𝑘-way
cycle matroid of a graph 𝐺 generates all the 𝑘-bonds of 𝐺. Although, working
with the circuits of Claim 4.2 is somehow intricate. We thus restrict our attention
to a special variant of Algorithm 3.2 which has several advantages.

– First, this variant is compatible with and extends Algorithm 3.7.
– Second, it coincides with the natural naive approach to generating 𝑘-bonds:

find a 2-cut, choose one of its sides and recursively find a 2-cut of this side,
and so on until 𝑘 parts are generated. In other words, we also prove that
such a naive approach is indeed correct (if properly implemented).

This special variant is defined as follows:

Definition 4.3 (Stepwise Circuit-Cocircuit implementation scheme).
We call an implementation of Algorithm 3.2 stepwise if, for every set 𝑋 = 𝑋0,
|𝑋0| = 𝑙, generated by the algorithm the following holds:
1. 𝑋0 is an ordered sequence (𝑐1, 𝑐2, . . . , 𝑐𝑙), where 𝑐𝑖 has been added to 𝑋0 at

the level 𝑖− 1 of recursion, and
2. there exists a mapping 𝑠 : {1, 2, . . . , 𝑘} → {0, 1, . . . , 𝑙} such that 𝑠(1) = 0,

𝑠(𝑘) = 𝑙 and, for each 𝑗 ∈ {2, . . . , 𝑘 − 1}, the set {𝑐1, . . . , 𝑐𝑠(𝑗)} (𝑋0 forms
a 𝑗-bond in 𝐺.

For 𝑗, 1 ≤ 𝑗 < 𝑘, we call the 𝑗-th stage of the algorithm the steps the algorithm
does at the levels 𝑠(𝑗), 𝑠(𝑗) + 1, . . . , 𝑠(𝑗 + 1)− 1 of recursion. In other words, the
algorithm in its 𝑗-th stage selects the elements 𝑐𝑠(𝑗)+1, . . . , 𝑐𝑠(𝑗+1).

Before proceeding into details of the stepwise implementations, we first show
that the definition indeed makes sense. A proof is again left for the Appendix.

8 Petr Hliněný and Ondřej Slámečka

Algorithm 4.5 One stage of a stepwise implementation
Input: A conn. graph 𝐺, param. 𝑗, 𝑘, 𝑚 ∈ N, 𝑗 < 𝑘, 𝑚 ≥ 1, and a 𝑗-bond 𝑌1 ⊆ 𝐸(𝐺)
Output: A collection of (𝑗 + 1)-bonds such that for each 𝑘-bond 𝑌 , 𝑌1 ⊆ 𝑌 ⊆ 𝐸(𝐺),
|𝑌 | ≤ 𝑚, some subset of 𝑌 is among the generated (𝑗 + 1)-bonds

1: if 𝑗 = 1 then ◁ 𝑌1 = ∅: select a 𝑘-way basis
2: 𝐹 ← an arb. spanning forest of 𝑘 − 1 trees
3: else ◁ 𝑌1 ̸= ∅: select a type-F circuit
4: 𝐹 ← an arb. spanning forest of 𝑘 − 2 trees and |𝐹 ∩ 𝑌1| = 1
5: end if
6: for all 𝑑 = {𝑢, 𝑣} ∈ 𝐹 ∖ 𝑌1 do
7: GenStage(𝑗, 𝑌1, 𝑋 = {𝑑}, 𝑉𝑟 = {𝑢}, 𝑉𝑏 = {𝑣}, 𝑇𝑟 = {𝑢})
8: end for.
9: procedure GenStage(𝑗, 𝑌, 𝑋, 𝑉𝑟, 𝑉𝑏, 𝑇𝑟)

10: Let 𝐺1 ⊆ 𝐺 be the component of 𝐺 ∖ 𝑌 containing 𝑋
11: if |𝑌 ∪𝑋| > 𝑚− 𝑘 + 𝑗 + 1 then
12: return ⊥ ◁ no way to get a 𝑘-bond of size ≤ 𝑚
13: end if
14: if there does not exist a connected subgraph
15: 𝑇𝑏 ⊆ (𝐺1 ∖ 𝑉 (𝑇𝑟)) ∖𝑋 such that 𝑉𝑏 (𝑉 (𝑇𝑏) then
16: return ⊥ ◁ the “no hyperplane” condition
17: end if
18: 𝑃 ← a minimal path in 𝐺1 from 𝑉 (𝑇𝑟) to 𝑉𝑏

19: if such 𝑃 does not exist then
20: output 𝑌 ∪𝑋 ◁ 𝑌 ∪𝑋 is a 𝑗 + 1-bond
21: else
22: for all 𝑐 ∈ 𝑃 do ◁ add 𝑐 to 𝑋 and update 𝑇𝑟

23: Let 𝑢 be the vertex in 𝑐 = {𝑢, 𝑣} which is closer to 𝑇𝑟

24: Let 𝑃𝑢 be the component of 𝑃 − 𝑐 which contains 𝑢
25: GenStage(𝑗, 𝑌, 𝑋 ∪ {𝑐}, 𝑉𝑟 ∪ {𝑢}, 𝑉𝑏 ∪ {𝑣}, 𝑇𝑟 ∪ 𝑃𝑢)
26: end for
27: end if
28: end procedure

Proposition 4.4. A stepwise implementation of Algorithm 3.2 is possible. Pre-
cisely, for every 𝑘 ≥ 2 there exists a stepwise implementation generating all the
𝑘-bonds in a given connected graph.

One can, moreover, easily show (with a formal proof in the Appendix) that
a “transition” from the 𝑗-th stage to (𝑗 + 1)-st one in a stepwise implementation
really means to construct a 2-bond in one of the parts of the previous 𝑗-bond. A
desired consequence is that we can decompose the stepwise algorithm computa-
tion into these stages such that, in each stage, we simply invoke Algorithm 3.7.

These findings directly lead to a stepwise algorithm whose one stage is shown
in pseudocode in Algorithm 4.5. Validity of this new algorithm then, in turn,
follows immediately from the following statement describing its one stage output.
Theorem 4.6. Let 𝐺 be a graph, 𝑗, 𝑘, 𝑚 integers such that 𝑗 < 𝑘, 𝑚 ≥ 1 and
𝑌1 ⊆ 𝐸(𝐺) a 𝑗-bond in 𝐺. Algorithm 4.5 generates a set 𝒮 of (𝑗 + 1)-bonds such

Practical Exhaustive Generation of Small Multiway Cuts in Sparse Graphs 9

that for each 𝑘-bond 𝑌 , 𝑌1 ⊆ 𝑌 ⊆ 𝐸(𝐺), |𝑌 | ≤ 𝑚, some subset of 𝑌 is among
the generated (𝑗 + 1)-bonds in 𝒮.

The proof follows from Proposition 3.8 via the previous claims.

5 Canonical Generation

We now return to Remark 3.5; addressing the problem that one bond 𝑋0 is
typically generated many times by our circuit-cocircuit algorithm, each time
with a different permutation of its elements. While such a repetition can be
easily removed by a post-processing, it costs running time. Ideally, our algorithm
should for each 𝑋0 “guess” one computation path leading to 𝑋0 and immediately
dismiss all the other attempts, as early as possible in the generation process. But
how can this be done? This is not at all an easy question since, for example, we
have to ensure that (nearly) every two bonds 𝑋0, 𝑋1 sharing many elements also
share a long prefix of the guessed computation path, and so on. Most importantly,
the guessed computation path of 𝑋0 must be compatible with Algorithm 3.2,
i.e., each next element of 𝑋0 on the path must be from the circuit 𝐶 on line 10
of the algorithm, which is not a priori clear how to achieve.

There exists a sophisticated technique of generation by a canonical construc-
tion path by McKay [7], outlined next. Since we cannot fit the details of this
technique and its application to our case into the restricted conference paper,
we stay on a very informal level in the main text body and leave more details
for the Appendix.

In our case, a computation path of a bond 𝑋0 in 𝐺 is simply encoded by a
permutation �⃗�0 of the elements of 𝑋0. The definition of a canonical form �⃗�0 of
𝑋0 respects the stepwise generation framework as follows:

I) The permutation �⃗�0 refines the order of the stages in some stepwise com-
putation path leading to 𝑋0 (cf. Definition 4.3).

II) There is an arbitrary bijection 𝜄 : 𝐸(𝐺) → {1, . . . , |𝐸(𝐺)|} indexing the
edges of 𝐺. The starting edges of the stages in �⃗�0 are each 𝜄-minimal within
its stage, and they are altogether strictly ordered by 𝜄 (first-to-last stage).

III) Within each stage, the corresponding sub-permutation of �⃗�0 (except the
starting edge) is determined by the shortest path 𝑃 selection and the red/blue
tree mechanism of Alg. 3.7; see also the appropriate parts of Alg. 4.5.
Two additional details are important for a successful implementation of this
point. First, the red and blue sides of the hyperplane test are uniquely de-
cided with the first edge of the stage based on a fixed vertex indexing of 𝐺.
Second, the unit lengths of edges of 𝐺 are slightly perturbed to achieve
uniqueness of the shortest path 𝑃 selection.

Concerning the canonical implementation of bond generation, point I) and
parts of III) of the scheme are already embedded in Algorithm 4.5, and the
rest of III) is rather straightforward to add. The biggest runtime savings come
from implementing point II). At the beginning of each stage, the starting edge

10 Petr Hliněný and Ondřej Slámečka

is selected from an 𝜄-minimal basis (or type-F circuit) among its edges of 𝜄-value
higher than that of the previous stage. Then, the remaining edges of this stage
are restricted only to those candidates of higher 𝜄-value than the starting edge.

Although the presented scheme is not truly canonical since one 𝑘-bond 𝑋0
can still be generated in more than one canonical form, it is implementation-wise
very easy and provides great speed-up for the algorithm; see the next section.

6 Evaluation

In this section we present the outcomes of measurements performed with imple-
mentations of our algorithms on the road networks of the regions of Czech re-
public: the Zlín Region (723 vertices, 974 edges) and the Olomouc Region (1454
vertices, 2066 edges). Measurements using the larger road network of Central
Bohemian Region (4114 vertices, 5964 edges) gave similar results.

We have implemented the core algorithm of Section 4 which generates same
bonds multiple times (i.e., without canonical generation), and the improved algo-
rithm of canonical generation from Section 5. For the running time evaluation we
used a computer with 16 GB RAM and the Intel Core i7-3770 CPU @ 3.40GHz.
The source code was compiled with gcc 4.8.2.

The measurement results are summarized in the tables below. To start, Ta-
bles 1 and 2 show the overall runtimes where the entries marked ‘-’ did not finish
before the time limit. Tables 3 and 4 show the improvement, in terms of runtime,
of the canonical generation algorithm from Section 5 over the ordinary algorithm
from Section 4. The improvement achieved by preventing repeated generation
of the same bonds is up to 15× in the experiments. This runtime improvement
well correlates with the average multiplicity of repeatedly generated bonds by
the ordinary algorithm in Table 5. Although the approach of Section 5 does not
completely prevent repeated generation of the same bonds, the percentage of
“leftover” multiply generated bonds is truly marginal and hence negligible for
practical computations; see Table 6.

To demonstrate superiority of the circuit-cocircuit algorithm over the brute-
force approach trying all 𝑚-tuples of edges for 𝑘-bonds, we include Table 7.
The table summarizes the distribution of lengths of the path 𝑃 (Algorithm 4.5,
line 18), which represent the degrees of branching of the circuit-cocircuit algo-
rithm inside each stage. While the brute-force approach would result in a quite
bad running time of order 𝒪

(︀
|𝐸(𝐺)|𝑚/𝑚!

)︀
, the nature of Algorithm 4.5 to-

gether with the experimental data in Table 7 suggest that the running time can
be, roughly,

𝒪
(︀
|𝑉 (𝐺)|𝑘 · 𝛽𝑚−𝑘

)︀
, (1)

where the auxiliary constant 𝛽 stands for a typical bound on the length of the
path 𝑃 and can be guessed as 𝛽 ≈ 5.

Comparing to Tables 1 and 2, one can see quite a good match in the runtime
dependence on (𝑚 − 𝑘) in (1), while the dependence on 𝑘 seems overshadowed
by other aspects of the algorithm for the small experimental values of 𝑘, 𝑚.

Practical Exhaustive Generation of Small Multiway Cuts in Sparse Graphs 11

Table 1. Running time of an imple-
mentation of the canonical generation
in seconds. Zlín Region

k
m 2 3 4 5 6 7 8
2 0.0 0.1 1 2 9 42 210
3 0.6 2.8 13 53 223 986 4604
4 29.5 198 1018 4771 21269 -
5 1156 9885 56847 - -

Table 2. Running time of an imple-
mentation of the canonical generation
in seconds. Olomouc Region

k
m 2 3 4 5 6 7 8
2 0.1 0.3 1 5 16 69 305
3 3.0 10.4 61 235 921 3482 13342
4 158.3 781 6008 - - -
5 6205 43242 - - -

Table 3. Ratio of running times
without and with canonical gener-
ation. Zlín (top) and Olomouc (bot-
tom) Region

k
m 2 3 4 5 6 7
2 1.00 2.00 2.45 3.60 4.3 1.34
3 3.28 3.51 6.05 8.83 12.11 14.90
4 8.40 11.32 15.73 - -

k
m 2 3 4 5 6 7
2 1.14 1.93 1.91 2.18 4.30 5.06
3 1.97 3.47 4.49 6.69 8.31 9.41
4 5.96 10.16 15.53 - -

Table 4. Ratio of the numbers of gen-
erated bonds without and with canoni-
cal generation. Zlín (top) and Olomouc
(bottom) Region

k
m 2 3 4 5 6 7
2 1.43 1.97 2.67 3.52 4.42 1.15
3 2.00 3.08 4.27 5.99 7.94 10.09
4 6.00 9.50 13.38 - -

k
m 2 3 4 5 6 7
2 1.32 1.93 2.53 3.26 4.04 4.78
3 2.00 2.84 4.03 5.50 7.41 9.59
4 6.00 8.79 12.37 - -

Table 5. The average multiplicity of
(repeatedly) generated bonds in the
non-canonical generation algorithm.
Zlín (top) and Olomouc (bottom)

k
m 3 4 5 6 7
3 3.112 4.309 6.092 8.152 10.465
4 9.706 13.642 - -

k
m 3 4 5 6 7
3 2.840 4.038 5.536 7.491 9.739
4 8.817 12.432 - -

Table 6. The percentage of repeatedly
generated bonds in the canonical gener-
ation algorithm. Zlín (top) and Olomouc
(bottom) Region

k
m 3 4 5 6 7
3 0.972% 0.814% 1.618% 2.664% 3.715%
4 2.177% 1.950% 3.462% -

k
m 3 4 5 6 7
3 0.156% 0.253% 0.649% 1.049% 1.568%
4 0.352% 0.541% - -

Lastly, we would like to comment on a possible parallelization of the new
algorithm. This is actually very easy: each time when adding a new edge to the
bond 𝑋, one may simply run all the computation branches in parallel, without

12 Petr Hliněný and Ondřej Slámečka

Table 7. The distribution of lengths of the path 𝑃 from Algorithm 4.5. Results
of the computation on Zlín Region, 𝑘 = 3, 𝑚 = 6; on the left showing the
second level of recursion of GenStage, on the right the fifth level (the algorithm
occasionally uses even longer paths in later GenStage calls).

0 5 10 15 20 25 30 0 5 10 15 20 25 30

any need for synchronization or communication between the branches. Further-
more, especially in the canonical generation case, no costly final post-processing
of the generated bonds is needed.

7 Conclusion

We have presented a new “Circuit-Cocircuit” algorithm for exhaustive generation
of cocircuits in a matroid, with a practical application to finding all the minimal
𝑘-way cuts in a graph. We have further elaborated on the algorithm to achieve an
almost canonical generation process, which significantly speeds-up the algorithm
by early removal of duplicate computation branches. This theoretical work has
been complemented by an implementation and extensive practical evaluations
of the algorithm on real-world data. The source code of our implementation is
available at https://github.com/OndrejSlamecka/mincuts.

In a conclusion, our implementation solves the problem of finding all small
multiway cuts correctly as well as quickly (given the high theoretical complex-
ity of the problem) and with very low memory usage, thus demonstrating the
feasibility of this algorithm for practical computations, e.g., in road network
planning and management. In particular, the algorithm performs significantly
better than the brute-force algorithm on real-world networks. Our algorithm
will help to improve the results of [1] (where only a simplified heuristic version
of the Circuit-Cocircuit algorithm, without canonicity, was implemented).

Our main suggestions for future work are as follows. The main theoretical
question is whether there exists a method of truly canonical generation which
does not require costly explicit isomorphism checks. On the implementation side,
profiling shows that the algorithm spends most of time in the shortestPath
procedure—finding a good CPU-aware implementation [8] of this procedure
would benefit the running time.

https://github.com/OndrejSlamecka/mincuts

REFERENCES 13

References

1. Bíl, M., Vodák, R., Hliněný, P., Svoboda, T., Rebok, T.: “A Novel Method for Rapid
Identification of Road Links Causing Network Break-Up”. Submitted to EJOR 2015

2. Provan, J.S., Ball, M.O.: The Complexity of Counting Cuts and of Computing the
Probability that a Graph is Connected. SIAM J. Comput. 12(4), 777–788 (1983)

3. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The Complexity of Multiterminal Cuts. SIAM J. Comput. 23(4), 864–894 (1994)

4. Reinelt, G., Wenger, K.M.: Generating partitions of a graph into a fixed number of
minimum weight cuts. Discrete Optimization 7(1-2), 1–12 (2010)

5. Dinic, E., Karzanov, A., Lomonosov, M.: A structure of the system of all minimum
cuts of a graph. In: Studies in Discrete Optimization, A.A. Fridman ed. Pp. 290–306.
Nauka, Moscow (in Russian) (1976)

6. Oxley, J.: Matroid Theory. Oxford University Press (2006)
7. McKay, B.D.: Isomorph-free Exhaustive Generation. J. Algorithms 26(2), 306–324

(1998)
8. Chhugani, J., Satish, N., Kim, C., Sewall, J., Dubey, P.: Fast and Efficient Graph

Traversal Algorithm for CPUs: Maximizing Single-Node Efficiency. In: 2012 IEEE
26th International Parallel and Distributed Processing Symposium, IEEE (2012)

14 APPENDIX

Appendix
A Supplements for Section 3

Proof of Theorem 3.3
Proof. First, we show that any set 𝑋0 returned by the algorithm is a cocircuit
and |𝑋0| ≤ 𝑚. By the condition on line 7, the set 𝐸 ∖𝑋0 contains a hyperplane
𝐻 of 𝑀 and |𝑋0| ≤ 𝑚. If 𝐻 = 𝐸 ∖𝑋0 then we are done by Claim 2.6 c). Now
suppose 𝐻 ̸= 𝐸 ∖ 𝑋0 and choose 𝑒 ∈ 𝐸 ∖ (𝑋0 ∪ 𝐻). According to Claim 2.6 b)
there is a basis 𝐵0 ⊆ 𝐻∪{𝑒}. Choose 𝑎 ∈ 𝑋0 and let 𝐶0 be the circuit contained
in 𝐵0 ∪ {𝑎} due to Claim 2.6 a). Then 𝐶0 ∩𝑋0 = {𝑎} contradicts the condition
on line 11 and thus 𝐻 must be equal to 𝐸 ∖𝑋0.

Second, we show that any cocircuit 𝑋1, |𝑋1| ≤ 𝑚, is returned. Let 𝑍1 ⊆ 𝑋1 be
the largest subset of 𝑋1 such that GenCocircuits(𝑍1) has been called. By Claim
2.6 d), 𝑋1∩𝐵 is nonempty for the basis 𝐵 selected on line 1 and thus 𝑍1 is defined
and non-empty. If 𝑍1 = 𝑋1 then 𝑋1 will be returned since it is a cocircuit and
no circuit 𝐶 is found on line 10. Suppose 𝑍1 ̸= 𝑋1 and choose 𝑑 ∈ 𝑋1 ∖ 𝑍1. By
Claim 2.6 b) there is a basis 𝐵1 ⊆ 𝐻1∪{𝑑} (where 𝐻1 := 𝐸 ∖𝑋1 is a hyperplane
of 𝑀). For any 𝑏 ∈ 𝑍1, let 𝐶1 be the circuit contained in 𝐵1∪{𝑏} by Claim 2.6 a).
Then 𝐶1∩𝑍1 = {𝑏}, and so there exists a circuit 𝐶2 to be found by the algorithm
on line 10 whilst 𝑋 = 𝑍1 (note that it may be 𝐶2 ̸= 𝐶1). Since |𝐶2 ∩𝑋1| ̸= 1,
there exists 𝑑′ ∈ 𝐶2 ∩𝑋1 such that 𝑑′ ̸∈ 𝑍1, and GenCocircuits(𝑍1 ∪ {𝑑′}) is
eventually called, contradicting the maximality of 𝑍1. ⊓⊔

Proof of Proposition 3.8
Proof. For the purpose of this proof, we imagine an extended version of Algo-
rithm 3.7, in which we set 𝐷 ← 𝐸(𝐶) ∖ 𝑋 on line 14 where 𝐶 any one of the
cycles implicitly associated with the path 𝑃 found by Algorithm 3.7 (3). Recall
that 𝑃 = 𝐶 ∖ (𝑇𝑟 ∪𝑋). This extended algorithm is an instance of Algorithm 3.2
and so it generates all the 2-bonds of size ≤ 𝑚 by Theorem 3.3.

Let �⃗�0 = (𝑐1, 𝑐2, . . . , 𝑐𝑙) be a permutation of a generated 2-bond 𝑋0 = 𝑋
such that the edge 𝑐𝑖 has been added to 𝑋 at the level (𝑖 − 1) of recursion.
Let 𝑇 𝑖

𝑟 be the value of the red-tree variable 𝑇𝑟 in the extended algorithm, at the
moment when 𝑐𝑖 has been added to 𝑋. It is now easy to see that �⃗�0 is generated
by Algorithm 3.7 if, and only if, in the extended algorithm it hols 𝑐𝑖 ̸∈ 𝐸(𝑇 𝑖

𝑟) for
all 𝑖 = 2, . . . , 𝑙. For every 2-bond 𝑋0 generated by the extended algorithm, such
a permutation �⃗�0 indeed does exist—it results from the computation branch
which, from the path 𝑃 at each recursion level selects the edge of 𝐸(𝑃)∩(𝑋0∖𝑋)
closest to the end in 𝑉𝑟. Therefore, 𝑋0 is generated by Algorithm 3.7. ⊓⊔

B Supplements for Section 4

Proof of Proposition 4.4. The proof follows, with respect to Theorem 3.3,
immediately from the following lemma (whose rich technical proof will be also
used in subsequent claims):

APPENDIX 15

Lemma B.1. Let 𝐺 be a connected graph and 𝑋 ⊆ 𝐸(𝐺) a 𝑘-bond, 𝑘 ≥ 2. For
any 𝑖-bond 𝑍 ⊂ 𝑋 of 𝐺, 𝑖 < 𝑘, there exists an (𝑖 + 1)-bond 𝑌 of 𝐺 such that
𝑋 ⊇ 𝑌 ⊃ 𝑍.

Proof. Let 𝐴 = 𝑋∖𝑍, 𝑒 ∈ 𝐴 and 𝐺′′ = 𝐺∖𝑋. Then 𝐺′′∪{𝑒} has 𝑘−1 components,
since 𝑋 is a minimal 𝑘-way cut. Choose maximal 𝐴1 ⊆ 𝐴 with 𝑒 ∈ 𝐴1, such
that 𝐺′′ ∪ 𝐴1 has 𝑘 − 1 components. In the same manner inductively construct
𝐴2, . . . , 𝐴𝑘−𝑖−1, where 𝐴𝑘−𝑖−1 is a maximal subset of 𝐴 such that 𝐺′′ ∪𝐴𝑘−𝑖−1

has 𝑖 components. This constructions yields 𝑍 = 𝑋 ∖𝐴𝑘−𝑖−1.
Now consider 𝐺′ = 𝐺∖𝑍, a graph of 𝑖 components. Let 𝐵 := 𝐴𝑘−𝑖−1 ∖𝐴𝑘−𝑖−2

and by 𝐺′
0 denote the component of 𝐺′ containing 𝐵 (note that 𝐵 ∩ 𝑍 = ∅). It

remains to prove that 𝑌 := 𝑍 ∪ 𝐵 is a desired (𝑖 + 1)-bond. Indeed, 𝐺 ∖ 𝑌 has
𝑖 + 1 components by the definition of 𝐴𝑘−𝑖−2, and by maximality of 𝐴𝑘−𝑖−2, for
any 𝑓 ∈ 𝐵, the graph 𝐺 ∖ (𝑌 ∖ {𝑓}) has the same 𝑖 components as 𝐺′ does. For
any 𝑓 ∈ 𝑍, the graph 𝐺′ ∪ {𝑓} = 𝐺 ∖ (𝑍 ∖ {𝑓}) has 𝑖− 1 components since 𝑍 is
an 𝑖-bond, and so 𝐺 ∖ (𝑌 ∖ {𝑓}) has again at most 𝑖 components. ⊓⊔

Properties of stepwise implementation scheme. We will also use the fol-
lowing two technical lemmas which follow by similar arguments as Lemma B.1.

Lemma B.2. Let 𝐺 be a connected graph and 𝑋 ⊆ 𝐸(𝐺) any 𝑘-bond, and
for 𝑗, 1 ≤ 𝑗 ≤ 𝑘, denote by 𝑋𝑗 the set {𝑐1, . . . , 𝑐𝑠(𝑗)} (w.r.t. Definition 4.3) and
by 𝐺𝑗 the graph 𝐺 ∖𝑋𝑗. For 𝑗, 1 ≤ 𝑗 < 𝑘, there is a connected component 𝐺𝑗

0 of
𝐺𝑗 such that 𝑍𝑗 = 𝑋𝑗+1 ∖𝑋𝑗 ⊆ 𝐸(𝐺𝑗

0) and 𝑍𝑗 is a 2-bond in 𝐺𝑗
0.

Proof. The set 𝐵 from the proof of Lemma B.1 is a 2-bond in 𝐺𝑗
0. ⊓⊔

Lemma B.3. For each stage 𝑗, 1 < 𝑗 < 𝑘, of a stepwise implementation of
Algorithm 3.2 for 𝑘-bonds, w.r.t. Definition 4.3, the following holds:

a) the set 𝐶 chosen on line 10 at the level 𝑠(𝑗) of recursion has to be a type-F
(spanning) circuit,

b) at the levels 𝑖, 𝑠(𝑗) + 1 ≤ 𝑖 < 𝑠(𝑗 + 1) of recursion, the set 𝐶 on line 10 can
always be chosen as a type-C circuit.

Proof (B.3 a). In each stage 𝑗, the edge the algorithm selects is 𝑐𝑠(𝑗)+1 from 𝐶
which is a 𝑘-way circuit in 𝐺. Since the set {𝑐1, . . . , 𝑐𝑠(𝑗)} forms a 𝑗-bond in 𝐺,
the value of 𝐶 at the level 𝑠(𝑗) cannot be a type-C circuit and thus it has to be
a type-F circuit by Claim 4.2.

(B.3 b). Let 𝑋0 be any 𝑘-bond (to be generated by the algorithm). Then the
associated set 𝑍𝑗 by Lemma B.2 for 𝑋 = 𝑋0 is a 2-bond in a component 𝐺𝑗

0
of 𝐺𝑗 . At the level 𝑖 it holds that 𝑍𝑗 ∩ 𝑋 ̸= ∅ ≠ 𝑍𝑗 ∖ 𝑋. Hence there exists a
cycle in 𝐺𝑗

0 intersecting 𝑋 in precisely one edge, and this cycle (its edges) can
be chosen as 𝐶 in the algorithm. ⊓⊔

16 APPENDIX

C Supplements for Section 5

C.1 Generation by a Canonical Construction Path

Imagine that we would like to generate some labeled objects �⃗�, and there is an
equivalence relation ≃ on the set of these objects. We can then apply generation
by a canonical construction path [7] to generate precisely one object from each
equivalence class of ≃.

For each equivalence class 𝒞 of ≃ we (carefully) choose in advance a unique
canonical representative. We denote the canonical representative can(�⃗�) for
some �⃗� ∈ 𝒞.

At each iteration of the generating procedure we start with a partial solution
�⃗� and we check whether this augmentation of �⃗� is a prefix of can(�⃗�), where �⃗�

is some complete solution made from �⃗� . Note that this check is allowed to have
false positives (that is allow augmentation which does not lead to the canonical
solution) but no false negatives.

At the end of the generating procedure there is a complete solution
�⃗� = can(�⃗�) and the algorithm outputs it.

The definition of can() has to be compatible with the original generating
routine so it is feasible to test 𝑋 against this definition often in the algorithm
and so it does not miss any solution. On the other hand one wants to choose
can() such that it prunes the search tree of the generating procedure1 to the
utmost possible measure.

C.2 Canonical Form of 𝑘-bonds

We apply the idea of generation by a canonical construction path to Algorithm
4.5. Firstly, we will define a unique ordering of the elements in each stage of the
stepwise generation procedure (for each generated bond) – Def. C.3. Secondly,
we will define a canonical ordering of a stepwise partition (Def. C.1) based on
an arbitrary indexing of the edges, which will then determine a canonical form
of a bond – Def. C.5.

Before continuing we recall the notation of Definition 4.3: Let 𝐺 be a con-
nected graph and 𝑋 ⊆ 𝐸(𝐺) a 𝑘-bond of size 𝑙. Consider a mapping 𝑠 :
{1, 2, . . . , 𝑘} → {0, 1, . . . , 𝑙} such that 𝑠(1) = 0, 𝑠(𝑘) = 𝑙. For each 𝑗 ∈ {1, . . . , 𝑘},
denote by 𝑍𝑗 the set {𝑐𝑠(𝑗)+1, . . . , 𝑐𝑠(𝑗+1)}, by 𝐺𝑗 the set 𝐺 ∖ {𝑐1, . . . , 𝑐𝑠(𝑗)} and
by 𝐺𝑗

0 the connected component of 𝐺𝑗 such that 𝑍𝑗 ⊆ 𝐸(𝐺𝑗
0).

Definition C.1 (Stepwise partition). Let 𝑍 be a 𝑘-bond. An ordered parti-
tion (𝑍1, . . . , 𝑍𝑘−1) of 𝑍 is called a stepwise partition if there exists a stepwise
implementation (confer Definition 4.3) of Algorithm 3.2, such that the elements
of 𝑍𝑗 are added to 𝑋 in its 𝑗-th stage.
1 A tree whose root marks the start of the algorithm, inner nodes contain partial

solutions and leaves mark the ends of computation branches (the output structures).

APPENDIX 17

There is a one to one correspondence between a stepwise partition and the index
mapping 𝑠 shown above. Hence, to simplify the text, we will freely use one of
these two to refer to the other.

Remark C.2. Observe that not every ordering of {𝑍1, . . . , 𝑍𝑘−1} is a valid step-
wise partition by Definition C.1. On the other hand, by Proposition 4.4, there
exists a valid stepwise partition for each 𝑘-bond.

Using Lemma B.2 and the previous definitions, we give:

Definition C.3 (Canonical form of a stepwise partition). Let 𝐺 be a
connected graph, 𝑋 ⊆ 𝐸(𝐺) a 𝑘-bond with |𝑋| = 𝑙, 𝒵 a stepwise partition
of 𝑋 and 𝑠 the corresponding index mapping dependent on 𝒵. Furthermore
let 𝜄 : 𝐸(𝐺) → {1, . . . , |𝐸(𝐺)|}, 𝜈 : 𝑉 (𝐺) → {1, . . . , |𝑉 (𝐺)|} be arbitrary bi-
jections (indexing the edges and vertices) and let 𝜆 : 𝐸(𝐺) → N be an arbi-
trary mapping. The canonical form of 𝒵, 𝑐𝑎𝑛(𝒵) := �⃗�, is a unique permutation
�⃗� = (𝑐1, 𝑐2, . . . , 𝑐𝑙) of 𝑋 which refines the ordered partition 𝒵 and satisfies the
following, for each 𝑗 ∈ {1, . . . , 𝑘 − 1}:

a) Let 𝑢, 𝑣 be the ends of 𝑐𝑠(𝑗)+1 ∈ 𝑍𝑗. The vertices of edges in 𝑍𝑗 can be
bipartitioned as 𝑉 (𝑍𝑗) = 𝑉 𝑗

𝑟 ∪ 𝑉 𝑗
𝑏 , such that each edge 𝑢𝑣 ∈ 𝑍𝑗 has one end

in 𝑉 𝑗
𝑏 and the other in 𝑉 𝑗

𝑟 , and it holds 𝑢 ∈ 𝑉 𝑗
𝑟 if and only if 𝜈(𝑢) < 𝜈(𝑣).

b) The edge 𝑐𝑠(𝑗)+1 satisfies 𝜄(𝑐𝑠(𝑗)+1) = min{𝜄(𝑐𝑖) : 𝑠(𝑗) < 𝑖 ≤ 𝑠(𝑘)}.
c) For each 𝑖 ∈ {𝑠(𝑗)+2, . . . , 𝑠(𝑗+1)}, let 𝑌𝑗,𝑖 := {𝑐𝑠(𝑗)+1, . . . , 𝑐𝑖} ⊆ 𝑍𝑗. Denote

by 𝒫𝑗,𝑖 the set of all paths 𝑃 ⊆ 𝐺𝑗
0∖𝑌𝑗,𝑖 having one end in 𝑉 (𝑌𝑗,𝑖)∩𝑉 𝑗

𝑟 and the
other in 𝑉 (𝑌𝑗,𝑖)∩𝑉 𝑗

𝑏 . Let 𝑃𝑗,𝑖 be the unique path in 𝒫𝑗,𝑖 lexicographically min-
imizing the triplet ⟨|𝐸(𝑃)|, len𝜆(𝑃), �⃗�(𝑃)⟩, where len𝜆(𝑃) =

∑︀
𝑒∈𝐸(𝑃) 𝜆(𝑒)

and �⃗�(𝑃) = (𝜄(𝑒1), 𝜄(𝑒2), . . . , 𝜄(𝑒|𝐸(𝑃)|)).
The edge 𝑐𝑖 is the edge of 𝐸(𝑃) ∩ 𝑍𝑗 closest to the end of 𝑃 in 𝑉 𝑗

𝑟 .

To simplify our notation we introduce functions 𝜇 and 𝜏 as follows.

Definition C.4. Let 𝜄 be an arbitrary bijection (confer Definition C.3), 𝑍 be a
𝑘-bond with stepwise partition (𝑍1, . . . , 𝑍𝑘−1), 𝑠 be the associated index mapping
and 1 ≤ 𝑗 ≤ 𝑘 − 1. We set

𝜇(𝑍𝑗) := min{𝜄(𝑐) : 𝑐 ∈ 𝑍𝑗}.

For 𝑌 being a prefix of 𝑍 and ℎ the largest index such that 𝑐𝑠(ℎ)+1 belongs to 𝑌 ;

𝜏(𝑌) :=
{︃
−∞ if 𝑌 = ∅

𝑐𝑠(ℎ)+1 otherwise.

Now we are going to define a canonical form of a bond, which deserves a
deeper explanation in advance. Let 𝑋 be an arbitrary 𝑘-bond. While for each
fixed stepwise partition 𝒵 (which is ordered) of 𝑋, we get a unique associated

18 APPENDIX

canonical form 𝑐𝑎𝑛(𝒵) = �⃗� by Definition C.3, different stepwise partitions of 𝑋

may exist and they obviously give different forms �⃗�.
In this situation, one should perhaps try to define a unique canonical step-

wise partition 𝒵 of 𝑋 (and then resort to Def. C.3). However, this would be
rather complicated and it appears easier and faster in practical applications, to
slightly relax the requirement of uniqueness of 𝒵 and to have a “canonical form”
definition for a 𝑘-bond which is not strictly unique. Such a definition follows,
and we also refer to further Example C.7.

Definition C.5 (Canonical form of a bond). Let 𝐺 be a connected graph
and 𝑋 ⊆ 𝐸(𝐺) be a 𝑘-bond. A permutation �⃗� is a canonical form of 𝑋 if there
exists a stepwise partition 𝒵 = (𝑍1, . . . , 𝑍𝑘−1) of 𝑋, such that 𝜇(𝑍1) < 𝜇(𝑍2) <

. . . < 𝜇(𝑍𝑘−1) and �⃗� = 𝑐𝑎𝑛(𝑍).

Lemma C.6. Let 𝐺 be a connected graph and 𝑋 ⊆ 𝐸(𝐺) be a 𝑘-bond. For any
𝜄, 𝜈, 𝜆 as in Definition C.3, there exists a canonical form �⃗� of 𝑋.

Proof. We proceed by induction on the number of stages. First we observe that
the edge 𝑐1 = 𝑐𝑠(1)+1 ∈ �⃗� satisfying 𝜄(𝑐𝑠(1)+1) = 𝑚𝑖𝑛{𝜄(𝑐𝑖) : 𝑠(1) < 𝑖 ≤ 𝑠(𝑘)},
lies in the 𝜄-minimum 𝑘-way basis, that is in the 𝜄-minimum spanning forest
𝐹 ⊆ 𝐺 consisting of 𝑘 − 1 trees.

For a contradiction suppose that 𝑐𝑠(1)+1 does not lie in 𝐹 . Because �⃗� is a
cocircuit of 𝐺, it intersects every basis of 𝐺 including the 𝜄-minimal one 𝐹 , by
Proposition 2.6. Say there is an element 𝑒 in the intersection of �⃗� with 𝐹 . Then
𝐹 ∪ {𝑐𝑠(1)+1} contains a circuit through 𝑒. The set 𝐹 ′ = 𝐹 ∪ {𝑐𝑠(1)+1} ∖ {𝑒} is a
basis such that

∑︀
𝑒∈𝐹 ′ 𝜄(𝑒) <

∑︀
𝑒∈𝐹 𝜄(𝑒), contradicting minimality.

By Lemma B.3 the remaining edges of the first stage can be selected from
type-C circuits. By the same argument as in Algorithm 3.7(3), these type-C
circuits are in a correspondence with the paths of 𝒫𝑗,𝑖 as in Definition C.3 c).
Hence the edges of 𝑍1 can be ordered to satisfy this point of the definition.

For the induction step consider the 𝑗-th stage and a 𝑗-bond 𝑌 ⊆ �⃗�. We want
to show that the edge 𝑐𝑠(𝑗)+1 ∈ �⃗� lies in the 𝜄-minimum corresponding type-F
circuit 𝐹 ′. Since |𝐹 ′ ∩ 𝑌 | = 1, it suffices to show that the edge 𝑐𝑠(𝑗)+1 lies in
the 𝜄-minimum spanning forest 𝐹 = 𝐹 ′ ∖ 𝑌 on 𝑘 − 1 trees (incidentally, this is
again a 𝑘-way basis) such that and 𝑌 ∩𝑆 = ∅. To observe this we can use a very
similar argument as in the base case.

The remaining edges of the 𝑗-th stage are ordered in the same way as in the
first stage. This finishes the induction step. ⊓⊔

Example C.7. Let 𝑋 = {0, 1, 2} be edges as in the figure. The canonical form of
𝑋 is not unique. Let 𝑘 = 3, 𝑚 = 3. In stage 1 the algorithm generates bonds
(0, 1) and (0, 2). In stage 2 the bond (0, 1) can be extended to (0, 1, 2) and the
bond (0, 2) can be extended to (0, 2, 1), which are both in a canonical form.

APPENDIX 19

0

2 1

BA

C

C.3 Canonical Generation within Algorithm 4.5

Definitions of a canonical bond can be incorporated into Algorithm 4.5 as follows
(using also some ideas from the proof of Lemma C.6).

– At the beginning of each stage the edge 𝑐 which is being added to 𝑋 has to
satisfy 𝜄(𝑐) > 𝜏(𝑌). Note that as a result the spanning minimum forest 𝐹
has to be recomputed at the beginning of each stage

– Within each stage, after the first edge has been chosen, then all the edges 𝑐′

being added to 𝑋 have to satisfy 𝜄(𝑐′) > 𝜏(𝑌).
– The path 𝑃 is chosen on line 18 such that it satisfies the condition of Defi-

nition C.3 c).
– The choice of edge 𝑐 ∈ 𝐸(𝑃)∩𝑍𝑗 , such that it is the edge in 𝐸(𝑃)∩𝑍𝑗 closest

to 𝑉𝑟 (Def. C.3 c)), is already “embedded” in the algorithm by iterating
through the edges of 𝑃 in order “red → blue”.

Directly from the above definitions and claims, one can conclude:

Lemma C.8. Let 𝐺 be a connected graph. If an implementation of Algorithm
4.5 satisfies the conditions of Definition C.3, namely

– the spanning forest selected at the beginning of each stage in ExtendBond is
chosen such that it is the unique minimal one with respect to edge weights 𝜄,

– each path 𝑃 is chosen such that it lexicographically minimizes the triplet
(|𝐸(𝑃)|, len𝜆(𝑃), �⃗�(𝑃)),

then every generated partition 𝒵 of each 𝑘-bond 𝑋 ⊆ 𝐸(𝐺) is in its canonical
form 𝑐𝑎𝑛(𝒵). ⊓⊔

We hence can modify Algorithm 4.5 according to Lemma C.8, which results
in a “canonical algorithm” whose pseudocode is presented in Algorithm C.9.

Summarizing the previous findings, we finally obtain:

Theorem C.10. Let 𝐺 be a connected graph and 𝑘 ≥ 2, 𝑚 ≥ 1 integers. Re-
cursive application of Algorithm C.9 returns every 𝑘-bond 𝑋 ⊆ 𝐸(𝐺), |𝑋| ≤ 𝑚,
at least once and in a canonical form.

20 APPENDIX

Algorithm C.9 One canonical stage of stepwise implementation
Input: A conn. graph 𝐺, param. 𝑗, 𝑘, 𝑚 ∈ N, 𝑗 < 𝑘, 𝑚 ≥ 1, and a 𝑗-bond 𝑌1 ⊆ 𝐸(𝐺)
Output: A collection of (𝑗 + 1)-bonds as in Algorithm 4.5, such that each one is in

the unique canonical form extending 𝑌1

1: if 𝑗 = 1 then
2: 𝐹 ← a 𝜄-minimum spanning forest of 𝑘 − 1 trees
3: else
4: 𝐹 ← a 𝜄-minimum spanning forest of 𝑘 − 2 trees, |𝐹 ∩ 𝑌1| = 1
5: end if
6: for all 𝑑 = {𝑢, 𝑣} ∈ 𝐹 ∖ {𝑒 ∈ 𝐸(𝐺) | 𝜄(𝑒) ≤ 𝜏(𝑌1)} do
7: if 𝜈(𝑣) < 𝜈(𝑢) then (𝑢, 𝑣)← (𝑣, 𝑢) fi
8: GenStage(𝑗, 𝑌1, 𝑋 = {𝑑}, 𝑉𝑟 = {𝑢}, 𝑉𝑏 = {𝑣}, 𝑇𝑟 = {𝑢})
9: end for.

10: procedure GenStage(𝑗, 𝑌, 𝑋, 𝑉𝑟, 𝑉𝑏, 𝑇𝑟)
11: Let 𝐺1 ⊆ 𝐺 be the conn. component of 𝐺 ∖ 𝑌 containing 𝑋
12: if |𝑌 ∪𝑋| > 𝑚− 𝑘 + 𝑗 + 1 then
13: return ⊥ ◁ no way to get a 𝑘-bond of size ≤ 𝑚
14: end if
15: if there does not exist a connected subgraph
16: 𝑇𝑏 ⊆ (𝐺1 ∖ 𝑉 (𝑇𝑟)) ∖𝑋 such that 𝑉𝑏 ⊆ 𝑉 (𝑇𝑏) then
17: return ⊥ ◁ the “no hyperplane” condition
18: end if
19: 𝑃 ′ ← a path 𝑃 ′ ⊆ 𝐺1 connecting some 𝑟 ∈ 𝑉𝑟 and 𝑏 ∈ 𝑉𝑏

20: and minimizing ⟨|𝐸(𝑃)|, len𝜆(𝑃), �⃗�(𝑃)⟩
21: 𝑃 ← 𝑃 ′ ∖ 𝑇𝑟

22: if such 𝑃 does not exist then
23: output 𝑌 ∪𝑋 ◁ 𝑌 ∪𝑋 is a 𝑗 + 1-bond
24: else
25: for all 𝑐 ∈ 𝑃 do
26: if 𝜄(𝑐) < 𝜏(𝑌 ∪𝑋) then
27: continue
28: end if
29: Let 𝑢 be the vertex in 𝑐 = {𝑢, 𝑣} which is closer to 𝑇𝑟

30: Let 𝑃𝑢 be the component of 𝑃 − 𝑐 which contains 𝑢
31: GenStage(𝑗, 𝑌, 𝑋 ∪ {𝑐}, 𝑉𝑟 ∪ {𝑢}, 𝑉𝑏 ∪ {𝑣}, 𝑇𝑟 ∪ 𝑃𝑢)
32: end for
33: end if
34: end procedure

APPENDIX 21

Algorithm C.10 Canonical stepwise Circuit-Cocircuit algorithm
Input: A connected graph 𝐺, parameters 𝑘, 𝑚 ∈ N, 𝑚 ≥ 1
Output: All 𝑘-way bonds of 𝐺 in a canonical form and with ≤ 𝑚 edges
1: ExtendBond(𝑗 = 1, 𝑌 = ∅, 𝑉𝑟 = ∅, 𝑉𝑏 = ∅, 𝑇𝑟 = ∅, 𝐺𝑏 = ∅)
2: procedure ExtendBond(𝑗, 𝑌, 𝑉𝑟, 𝑉𝑏, 𝑇𝑟, 𝐺𝑏)
3: 𝐹 ← 𝜄-minimum spanning forest 𝐹 ⊆ (𝐺 ∖ 𝑌) on 𝑘 − 1 trees
4: for all 𝑑 = {𝑢, 𝑣} ∈ 𝐹 ∖ {𝑒 ∈ 𝐸(𝐺) | 𝜄(𝑒) < 𝜏(𝑌)} do
5: if 𝜈(𝑣) < 𝜈(𝑢) then (𝑢, 𝑣)← (𝑣, 𝑢) fi
6: GenStage(𝑗, 𝑌, {𝑑}, {𝑢}, {𝑣}, {𝑢}, {𝑣})
7: end for
8: end procedure
9: procedure GenStage(𝑗, 𝑌, 𝑋, 𝑉𝑟, 𝑉𝑏, 𝑇𝑟, 𝐺𝑏)

10: Let 𝐺1 ⊆ 𝐺 be the conn. component of 𝐺 ∖ 𝑌 containing 𝑋
11: if |𝑌 ∪𝑋| > 𝑚− 𝑘 + 𝑗 + 1 then
12: return ⊥ ◁ no way to get a 𝑘-bond of size ≤ 𝑚
13: end if
14: 𝑃 ← a path 𝑃 ⊆ 𝐺1 connecting some 𝑟 ∈ 𝑉 (𝑇𝑟) and 𝑏 ∈ 𝑉𝑏

15: minimizing ⟨|𝐸(𝑃)|, len𝜆(𝑃), �⃗�(𝑃)⟩
16: if such 𝑃 does not exist then
17: if 𝑗 = 𝑘 − 1 then output 𝑌 ∪𝑋 ◁ 𝑋 is a 𝑘-bond
18: else ExtendBond(𝑗 + 1, 𝑌 ∪𝑋, ∅, ∅, ∅, ∅) fi
19: else
20: for all 𝑐 = {𝑢, 𝑣} ∈ 𝑃 do
21: Let 𝑢 be the vertex in {𝑢, 𝑣} which is closer to 𝑇𝑟

22: Let 𝑃𝑢 be the component of 𝑃 − 𝑐 which contains 𝑢
23: Let 𝑃𝑣 be the component of 𝑃 − 𝑐 which contains 𝑣
24: if 𝐺𝑏 ∖ {𝑐} is disconnected then
25: 𝐺𝑏 ← a new subgraph interconnecting 𝑉𝑏

26: if such 𝐺𝑏 cannot be found then
27: return ⊥ ◁ the “no hyperplane” condition
28: end if
29: end if
30: if 𝜄(𝑐) < 𝜏(𝑌 ∪𝑋) then
31: continue
32: end if
33: GenStage(𝑗, 𝑌, 𝑋 ∪ {𝑐}, 𝑉𝑟 ∪ {𝑢}, 𝑉𝑏 ∪ {𝑣}, 𝑇𝑟 ∪ 𝑃𝑢, 𝐺𝑏 ∪ 𝑃𝑣)
34: end for
35: end if
36: end procedure

22 APPENDIX

C.4 The Final Algorithm

See Algorithm C.10 for the overall pseudocode which results from Algorithm C.9
after applying certain heuristic improvements (which do not affect validity).

D Supplements for Section 6

The tool callgrind2 was used to measure the functions where the program
spends the most time. Over 80 % of the running time in computation of Zlín
with 𝑘 = 5, 𝑚 = 4 and Olomouc with 𝑘 = 6, 𝑚 = 3 is spent in the shortestPath
procedure. When computing Zlín with 𝑘 = 8, 𝑚 = 2 the shortestPath proce-
dure accounts for 54 % of the running time and finding a new blue subgraph
accounts for 41 %. The memory consumption of the program is marginal.

0
500
1 k
2 k
2 k
2 k
3 k

0 500

1
k

2
k

2
k

2
k

3
k

4
k

4
k

4
k

5
k

Fig. 8. Central Bohemian Region, 𝑘 = 3, 𝑚 = 4. Each point represents a branch
of computation started with a single edge in 𝑋. The running time [ms] is on the
𝑦 axis, the number of generated bonds is on the 𝑥 axis. This suggests an easy
speedup: parallelizing the for cycle at the beginning of the first stage

2 http://valgrind.org/docs/manual/cl-manual.html

http://valgrind.org/docs/manual/cl-manual.html

	Practical Exhaustive Generation of Small Multiway Cuts in Sparse Graphs
	Petr Hlinený and Ondrej Slámecka

